Saturday, 4 February 2017

Hidden Periodic Autoregressive Moving Average Modelle In Zeit Serie Daten

Versteckte periodische autoregressive - gleitende Durchschnittsmodelle in Zeitreihen - daten Zitate Zitate Referenzen Referenzen 0 quotFür frühere Arbeiten siehe ua Gladyshev (1961) und Jones und Brelsford (1967). Tiao und Grupe (1980) veranschaulichten die Tücken der Ignorierung des periodischen Verhaltens in der Zeitreihenmodellierung. Empirische Beweise, die die Nützlichkeit von PARMA-Modellen unterstützen, wurden von vielen Autoren dokumentiert, siehe beispielsweise Vecchia (1985a, 1985b), Salas und Obeysekera (1992), Lund (2006), Tesfaye et al. (2006) für Anwendungen für Streamflow-Reihen, Bloomfield et al. (1994), Lund et al. (2006) auf Umweltdaten, Osborn und Smith (1989) auf Wirtschaftsdaten und Gardner und Spooner (1994) für Anwendungen in der Signalverarbeitung. Zusammenfassung der Ergebnisse Zusammenfassung ABSTRAKT: Ziel dieser Arbeit ist es, die asymptotischen Eigenschaften von WLS-Schätzungen für kausale und invertierbare periodische autoregressive Moving Average (PARMA) Modelle mit nicht korrelierten, aber abhängigen Fehlern zu untersuchen. Unter milden Annahmen wird gezeigt, dass die WLS-Schätzer von PARMA-Modellen stark konsistent und asymptotisch normal sind. Sie erweitert Theorem 3.1 von Basawa und Lund (2001) auf kleinste Quadrate Schätzung von PARMA-Modellen mit unabhängigen Fehlern. Es ist ersichtlich, daß die asymptotische Kovarianzmatrix der WLS-Schätzer, die unter abhängigen Fehlern erhalten werden, im allgemeinen anders ist als bei unabhängigen Fehlern. Die Auswirkungen können auf den Standardinduzierungsmethoden, die auf unabhängigen Fehlern basieren, dramatisch sein, wenn diese abhängig sind. Beispiele und Simulationsergebnisse verdeutlichen die praktische Relevanz unserer Ergebnisse. Ein Antrag auf Finanzdaten wird ebenfalls vorgelegt. Artikel Nov 2011 Christian Francq Roch Roy Abdessamad Saidi quot), für alle nicht negativ Integer k. Bei s 1 ist die Bedingung der periodischen Stationarität äquivalent zur üblichen Bedingung für homogene Prozesse (Tiao und Grupe 33). ZUSAMMENFASSUNG: Dieses Papier schlägt ein robustes Schätzverfahren für die Parameter der periodischen AR (PAR) Modelle vor, wenn die Daten additive Ausreißer enthalten. Die vorgeschlagene robuste Methodik ist eine Erweiterung der robusten Skalen - und Kovarianzfunktionen in Rousseeuw und Croux (1993) 28 und Ma und Genton (2000) 23, um die Periodizität zu berücksichtigen. Diese periodischen robusten Funktionen werden in den YuleWalker-Gleichungen verwendet, um robuste Parameterschätzungen zu erhalten. Die asymptotischen zentralen Grenzwertsätze der Schätzer werden etabliert und ein umfangreiches Monte Carlo Experiment wird durchgeführt, um die Leistungsfähigkeit der robusten Methodik für periodische Zeitreihen mit endlichen Probengrößen zu bewerten. Die vierteljährlichen Fraser River-Daten wurden als Beispiel für die Anwendung der vorgeschlagenen robuste Methodik verwendet. Alle hier vorgestellten Ergebnisse liefern eine starke Motivation zur Anwendung der Methodik in praktischen Situationen, in denen periodisch korrelierte Zeitreihen additive Ausreißer enthalten. Volltext Artikel Okt 2010 A. J.Q. Sarnaglia V. A. Reisen C. Lvy-Leduc quotSur le plan statistique. Über parle propos de ces modles de priodicit cache. En effet. (Tiao et Grupe, 1980)), die in der Literatur beschrieben wurden, wurden in der vorliegenden Arbeit untersucht. Que des unfälle bien localiss. Zusammenfassung Abstract Zusammenfassung ABSTRAKT: Die Analyse der Saisonalität in der Ökonomie und die Entwicklung der neuen saisonalen Anpassungsverfahren haben in den letzten zwanzig Jahren neue Richtungen verfolgt. Wir untersuchen diese Frage durch die Arbeit der Banque de France (Monetäre Statistik und Studienverwaltung), um neue saisonbereinigte (SA) Daten zu erstellen. Eine kurze Diskussion der akademischen Literatur zeigt die Notwendigkeit, die bestehende Software mit empirischen Regeln zu vervollständigen, die vom Praktiker festgelegt wurden, um alle methodischen Entscheidungen klar zu machen und so jede Unklarheit zu vermeiden. Bei der Umsetzung des neuen Produktionsprozesses konzentrieren wir uns auf die Revisionspolitik einiger Schlüsselparameter des gesamten Prozesses, um die nachträglichen Revisionen bei der Veröffentlichung von SA-Daten zu minimieren. Wir veranschaulichen diese neue Methode der SA-Reihe in Bezug auf monetäre Aggregate, einschließlich Darlehen an Unternehmen und Haushalte, und bieten eine detaillierte Analyse der Konsistenz zwischen den Strömen und den ausstehenden Beträgen, die für die monetären Finanzdaten besonders relevant sind. Volltext Artikel Apr 2008 von W. Meiring, P. Guttorp, P. D. Sampson. 1997. Wir präsentieren einen Ansatz zur Schätzung der prozentualen Ozonkonzentrationen auf der Basis von Beobachtungen von Punktüberwachungsstellen im Weltraum zum Vergleich mit gridbasierten Ergebnissen des photochemischen Luft-Qualitätsmodells von SARMAP für eine Region Nordkaliforniens. Statistische Schätzung wird durchgeführt. Wir präsentieren einen Ansatz zur Schätzung der prozentualen Ozonkonzentrationen auf der Basis von Beobachtungen von Punktüberwachungsstellen im Weltraum zum Vergleich mit gridbasierten Ergebnissen des photochemischen Luft-Qualitätsmodells von SARMAP für eine Region Nordkaliforniens. Die statistische Schätzung wird auf einer transformierten (Quadratwurzel) Skala durchgeführt, gefolgt von einer Rücktransformation in die ursprüngliche Ozongröße in Teilen pro Milliarde, wobei die Vorspannung und Varianz eingestellt wird. Wir schätzen eine räumlich veränderliche diurnale Mittelstruktur und eine nicht-trennbare Raum-Zeit-Korrelationsstruktur auf der transformierten Skala. Dem zeitlichen Vorkonditionieren folgt eine Modellierung einer räumlich nicht stationären, diurnal variierenden räumlichen Korrelationsstruktur unter Verwendung eines räumlichen Deformationsansatzes. Vergleiche von SARMAP-Modell-Ergebnissen mit den geschätzten Raster-Ozon-Niveaus werden vorgestellt. Schlüsselwörter: Kriging, Nichttrennbare Raum-Zeit-Korrelation, Räumliche Skala, Transformation 1 Einleitung Photochemische Luftqualitätsmodelle wurden entwickelt. Von Paul L. Anderson, Mark M. Meerschaert - Water Resour. Res. 1998. Abstrakt. Jüngste Fortschritte in der Zeitreihenanalyse bieten alternative Modelle für Flussströme, in denen die Innovationen schwere Schwänze haben, so dass einige der Momente nicht existieren. Die Wahrscheinlichkeit großer Fluktuationen ist viel größer als bei Standardmodellen. Wir befassen uns mit einigen neueren theoretischen Entwicklungen. Abstrakt. Jüngste Fortschritte in der Zeitreihenanalyse bieten alternative Modelle für Flussströme, in denen die Innovationen schwere Schwänze haben, so dass einige der Momente nicht existieren. Die Wahrscheinlichkeit großer Fluktuationen ist viel größer als bei Standardmodellen. Wir untersuchen einige aktuelle theoretische Entwicklungen für schwere Tail-Zeitreihen-Modelle und zeigen ihre praktische Anwendung auf Flussfluss-Daten aus dem Salt River in der Nähe von Roosevelt, Arizona. Wir schließen auch einige einfache Diagnosen ein, die der Praktiker verwenden kann, um zu identifizieren, wenn die Methoden dieses Papiers nützlich sein können. 1. von Bypaull Anderson, Mark, M. Meerschaert - Stat. 1997. In dieser Arbeit wird die grundlegende asymptotische Theorie für periodisch sich bewegende Mittelwerte von i. i.d. Zufällige Variablen mit regelmäßig variierenden Schwänzen. Die gleitenden Durchschnittskoeffizienten können je nach Jahreszeit variieren. Eine einfache Reformulierung liefert die entsprechenden Ergebnisse für gleitende Mittelwerte von ran. In dieser Arbeit wird die grundlegende asymptotische Theorie für periodisch sich bewegende Mittelwerte von i. i.d. Zufällige Variablen mit regelmäßig variierenden Schwänzen. Die gleitenden Durchschnittskoeffizienten können je nach Jahreszeit variieren. Eine einfache Reformulierung liefert die entsprechenden Ergebnisse für gleitende Mittelwerte von Zufallsvektoren. Unser Hauptresultat ist, dass, wenn die zugrunde liegenden Zufallsvariablen eine endliche Varianz, aber ein unendliches viertes Moment haben, die Probenau-Korrekturen asymptotisch stabil sind. Es ist in diesem Fall gut bekannt, dass Probenautokorrelationen im klassischen stationären gleitenden Durchschnittsmodell asymptotisch normal sind. Einführung. Regelmäßige Variation wird verwendet, um jene i. i.d. Sequenzen von Zufallsvariablen, für die eine Version des zentralen Grenzwertsatzes gilt. Wenn diese Zufallsvariablen eine unendliche Varianz aufweisen, ist die Summe asymp-total stabil anstatt asymptotisch normal. Stabile Zufallsvariablen haben viele praktische Anwendungen gefunden, die mit der Arbeit von Holts beginnen - von Marius Ooms, Philip Hans Franses. 1998. Basierend auf einfachen Zeitreihenplots und periodischen Probenautokorrelationen, dokumentieren wir, dass monatliche Flussflussdatenanzeige lange Gedächtnis zusätzlich zu ausgeprägter Saisonalität. In der Tat scheint es, dass die lange Speichermerkmale mit der Jahreszeit variieren. Um diese beiden Eigenschaften gemeinsam zu beschreiben, haben wir. Basierend auf einfachen Zeitreihenplots und periodischen Probenautokorrelationen, dokumentieren wir, dass monatliche Flussflussdatenanzeige lange Gedächtnis zusätzlich zu ausgeprägter Saisonalität. In der Tat scheint es, dass die lange Speichermerkmale mit der Jahreszeit variieren. Um diese beiden Eigenschaften gemeinsam zu beschreiben, schlagen wir ein saisonales periodisches Langspeichermodell vor und passen es an die bekannten Fraser-Flussdaten an (die von Statlib unter lib. stat. cmu. edudatasets zu beziehen sind). Wir bieten eine statistische Analyse und bieten Impulsantwort-Funktionen zu zeigen, dass Schocks in bestimmten Monaten des Jahres haben eine länger anhaltende Wirkung als die in anderen Monaten. Langzeitgedächtnis, PARFIMA, SPARFIMA 1 Einleitung Seit den frühen Arbeiten von Hurst auf Nil-Daten ist es bekannt, dass Flussflüsse anhaltende Schwankungen aufweisen, die durch lange Erinnerungen gekennzeichnet sein können. Zusätzlich zum langen Gedächtnis zeigen die meisten Flussflußdatenanzeige ausgeprägte Saisonalität, sowohl im Mittel als auch in der Abweichung. Von Paul L. Anderson, Mark M. Meerschaert, Aldo V. Vecchia - Proceedings of the IEEE Sonderausgabe über Kryptographie und Sicherheitsprobleme. 2004. Periodische ARMA oder PARMA, Zeitreihen werden verwendet, um periodisch stationäre Zeitreihen zu modellieren. In diesem Papier entwickeln wir den Innovationsalgorithmus für periodisch stationäre Prozesse. Wir zeigen dann, wie der Algorithmus verwendet werden kann, um Parameterschätzungen für das PARMA-Modell zu erhalten. Diese Schätzungen sind prov. Periodische ARMA oder PARMA, Zeitreihen werden verwendet, um periodisch stationäre Zeitreihen zu modellieren. In diesem Papier entwickeln wir den Innovationsalgorithmus für periodisch stationäre Prozesse. Wir zeigen dann, wie der Algorithmus verwendet werden kann, um Parameterschätzungen für das PARMA-Modell zu erhalten. Diese Schätzungen sind für PARMA-Prozesse, deren zugrunde liegende Rauschsequenz entweder endliches oder unendliches viertes Moment ist, als schwach konsistent erwiesen. Da viele Zeitreihen aus den Bereichen Ökonomie und Hydrologie schwere Schwänze aufweisen, sind die Ergebnisse des unendlichen vierten Momentenfalles von besonderem Interesse. Von Paul L. Anderson, Mark M. Meerschaert - Zeitschrift für Zeitreihenanalyse. 2003. Der Innovationsalgorithmus kann verwendet werden, um Parameterschätzungen für periodisch stationäre Zeitreihenmodelle zu erhalten. In diesem Papier berechnen wir die asymptotische Verteilung für diese Schätzungen für den Fall, dass die Innovationen ein endliches viertes Moment haben. Diese asymptotischen Ergebnisse sind nützlich, um zu bestimmen. Der Innovationsalgorithmus kann verwendet werden, um Parameterschätzungen für periodisch stationäre Zeitreihenmodelle zu erhalten. In diesem Papier berechnen wir die asymptotische Verteilung für diese Schätzungen für den Fall, dass die Innovationen ein endliches viertes Moment haben. Diese asymptotischen Ergebnisse sind nützlich, um zu bestimmen, welche Modellparameter signifikant sind. Dabei entwickeln wir auch Asymptotiken für die Yule-Walker-Schätzungen. 1 von A. I. Mcleod. 1993. dieses Papier. Diese Diagnoseprüfung wird für die routinemäßige Verwendung von saisonalen ARMA-Modellen empfohlen. Es wird gezeigt, dass diese diagnostische Überprüfung zeigt, dass viele saisonale ökonomische Zeitreihen auch periodische Korrelation aufweisen. Da die Standard-Prognosemethoden hierfür nicht ausreichen, dieses Papier. Diese Diagnoseprüfung wird für die routinemäßige Verwendung von saisonalen ARMA-Modellen empfohlen. Es wird gezeigt, dass diese diagnostische Überprüfung zeigt, dass viele saisonale ökonomische Zeitreihen auch periodische Korrelation aufweisen. Da die Standardprognosemethoden hierfür nicht ausreichen, lässt sich daraus schließen, dass die Prognosen in vielen Fällen suboptimal sind. Schließlich wird auch eine Begrenzung der willkürlichen Kombination von Prognosen dargestellt. Das Kombinieren von Prognosen aus einem adäquaten sparsamen Modell mit einem unzureichenden Modell verbesserte nicht die Prognosen, während die Kombination der beiden Prognosen von zwei unzureichenden Modellen eine Verbesserung bei der Prognose der Leistung lieferte. Diese Befunde unterstützen auch die Modellbauphilosophie von Box ampamp Jenkins. Die nicht-intuitive Befunde von Newbold ampamp Granger (1974) und Winkler ampamp Makridakis (1983), dass die scheinbar willkürliche Kombination von Prognosen ähnlicher Modelle zur Prognoseperformance führen wird, wird von unserer Fallstudie mit der Flussflussvorhersage nicht unterstützt. Schlüsselwörter: Kombinierte Prognosen Diagnostische Kontrolle Periodische Korrelation Prognose Saison Zeitreihe Modell Adequacy Parameter Parsimony. 1 von Abdelhakim Aknouche, Abdelouahab Bibi. 709. Dieses Papier stellt die starke Konsistenz und die asymptotische Normalität des Quasi-Maximum-Likelihood-Schätzers (QMLE) für einen GARCH-Prozess mit periodisch zeitveränderlichen Parametern her. Wir geben zunächst eine notwendige und hinreichende Bedingung für die Existenz einer streng periodisch stationären Lösung. Dieses Papier stellt die starke Konsistenz und die asymptotische Normalität des Quasi-Maximum-Likelihood-Schätzers (QMLE) für einen GARCH-Prozess mit periodisch zeitveränderlichen Parametern her. Wir geben zunächst eine notwendige und hinreichende Bedingung für die Existenz einer streng periodisch stationären Lösung für die periodische GARCH (P-GARCH) - Gleichung. Als Ergebnis wird gezeigt, dass das Moment einer positiven Ordnung der P-GARCH-Lösung endlich ist, unter der wir die starke Konsistenz und asymptotische Normalität (CAN) des QMLE ohne jegliche Bedingung für die Momente des zugrunde liegenden Prozesses beweisen. Von Philip Hans Franses, Richard Paap. 2005. Dieses Kapitel befasst sich mit der Prognose von univariaten saisonalen Zeitreihendaten unter Verwendung von periodischen autoregressiven Modellen. Wir zeigen, wie Faktorenwurzeln und deterministische Begriffe bei der Erstellung von Prognosen berücksichtigt werden sollen. Wir illustrieren die Modelle für die vierteljährlichen britischen Verbrauchsreihen Thi. Dieses Kapitel beschäftigt sich mit der Prognose von univariaten saisonalen Zeitreihendaten unter Verwendung von periodischen autoregressiven Modellen. Wir zeigen, wie man die Wurzeln der Einheiten und die deterministischen Ausdrücke bei der Erstellung von Prognosen berücksichtigen soll. Wir illustrieren die Modelle für die vierteljährlichen britischen Verbrauchsreihen Kapitel, das für die potentielle Einbeziehung in den Companion to Economic Forecasting vorbereitet werden soll, herausgegeben von Michael Clements und David Hendry Oxford Basil von M. Karanasos, AG Paraskevopoulos, S. DafnosHidden Periodische Autoregressive-Moving-Average-Modelle in der Zeitreihe Data Citations Zitate 152 Referenzen Wie in dem Abtastalgorithmus 1 verwendet. Wenn ferner eine Stationarität auf das PAR (p) - Modell in (2) angewendet werden soll, können die posterioren Ziehungen des Subvektors in B durch die Verwendung von & agr; Zusätzliche Akzeptanz-Ablehnungsschritt in Schritt 4. Beachten Sie, dass, obwohl PAR-Modelle durch Konstruktion nichtstationär sind, 4 eine Stationaritätsbedingung unter Verwendung einer multivariaten Modelldarstellung wie in Tiao und Grupe (1980) angegeben werden kann. Durch Schreiben des univariaten PAR (p) - Modells (2) als Sdimensionales Vektor-Autoregressivmodell der Ordnung P (x27VAR (P) x27) wird mit P1 (p1) S die übliche Stabilitätsbedingung der VAR-Modelle charakteristisch charakterisiert Polynom mit Wurzeln z verwendet werden (siehe Hamilton (1994), S.259, für Details). Zusammenfassung Abstract Zusammenfassung ABSTRAKT: Für die Vorhersage von vierteljährlichen und monatlichen Zeitreihendaten wird ein flexibles Bayessisches periodisches autoregressives (PAR) Modell verwendet. Da die unbekannte autoregressive Verzögerungsreihenfolge das Auftreten struktureller Brüche und ihre jeweiligen Bruchtermine gemeinsame Quellen der Unsicherheit sind, werden diese als Zufallsgrößen innerhalb des Bayesschen Rahmens behandelt und als Modellindikatoren verwendet, d. h., um verschiedene Modelle im Modellraum zu identifizieren. Da keine analytischen Ausdrücke für die entsprechenden marginalen posterioren prädiktiven Verteilungen existieren, wird ein Markov Chain Monte Carlo Ansatz basierend auf Datenvermehrung vorgeschlagen, um diese Verteilungen zu approximieren, und seine Leistung wird in Monte Carlo Experimenten demonstriert. Anstatt auf einen Modellauswahlansatz durch Auswahl eines bestimmten Kandidatenmodells für die Vorhersage zurückzugreifen, wird ein Prognosemethode basierend auf einer Bayes'schen Modellmittelung verwendet, um die Modellunsicherheit zu berücksichtigen und die Genauigkeit der Prognose zu verbessern. Für die Modelldiagnose wird ein Bayes'scher Signentest eingeführt, um die prädiktive Genauigkeit verschiedener Prognosemodelle in Bezug auf statistische Signifikanz zu vergleichen. In einer empirischen Anwendung wird unter Verwendung der monatlichen Arbeitslosenquoten von Deutschland die Leistung des Modell-Mittelwert-Vorhersageansatzes mit jenen von modellselektierten Bayesschen und klassischen (nicht) periodischen Zeitreihenmodellen verglichen. Volltext-Artikel Dez 2016 WMU Zeitschrift für maritime Angelegenheiten Alexander Vosseler Enzo Weber "Allerdings ist es bekannt, z. B. Tiao amp Grupe (1980) und Azrak amp Mlard (2006) veröffentlicht. Dass ein rdimensionaler autoregressiver Prozess mit periodischen Koeffizienten der Periode s N in einen s-dimensionalen stationären autoregressiven Prozess eingebettet werden kann. Um diese Vereinfachung zu vermeiden, betrachten wir Koeffizienten A ij t () entweder mit deutlichen irrationalen Perioden oder zumindest mit großen relativ prime Perioden. Abstract Zusammenfassung Abstrakte Zusammenfassung ABSTRACT: Dieses Papier ist über Vektor autoregressive-moving average (VARMA) Modelle mit zeitabhängigen Koeffizienten, um nicht-stationäre Zeitreihen darstellen. Im Gegensatz zu anderen Papieren im univariaten Fall hängen die Koeffizienten von der Zeit ab, aber nicht von der Länge der Reihe n. Unter geeigneten Annahmen wird gezeigt, dass ein Gaußscher Quasi-Maximum-Likelihood-Schätzer fast sicher konsistent und asymptotisch normal ist. Die theoretischen Ergebnisse werden anhand von zwei Beispielen von bivariaten Prozessen veranschaulicht. Es wird gezeigt, dass die den theoretischen Ergebnissen zugrunde liegenden Annahmen zutreffen. Im zweiten Beispiel sind die Innovationen auch marginal heteroszendiert mit einer Korrelation von -0,8 bis 0,8. In den beiden Beispielen wird die asymptotische Informationsmatrix im Gaußschen Fall erhalten. Schließlich wird das Finite-Sample-Verhalten über eine Monte-Carlo-Simulationsstudie für n von 25 bis 400 überprüft. Die Ergebnisse bestätigen die Gültigkeit der asymptotischen Eigenschaften auch für kurze Reihen und zeigen, dass die asymptotische Informationsmatrix aus der Theorie abgeleitet ist. Artikel Juni 2015 WMU Zeitschrift für maritime Angelegenheiten Abdelkamel Alj Christophe Ley Guy Mlard Nach Franses und Paap (2004) hat es in den letzten Jahren ein enormes Interesse an der Prognose und Modellierung saisonaler Zeitreihen mit periodischen Modellen gegeben. Periodische Modelle sind seit langem in der Umwelt, Wasserressourcen und meteorologischen Disziplinen im Einsatz, siehe Jones und Brelsford (1967), Pagano (1978), Troutman (1979), Tiao und Grupe (1980), Salas et al. (1980) und Vecchia (1985). Franses und Paap (2004) gaben an, dass periodische Modelle aus ökonomischer Perspektive plausibel sein können, da sie einfach zu analysieren sind und zu genauen Prognosen führen können. Zusammenfassung Abstract In dieser Arbeit wird die Anwendbarkeit von bekannten Fuzzy-Zeitreihen-Prognosemethoden zur Vorhersage von Bunkerpreisen untersucht. Diese Techniken wurden mit großem Erfolg bei der Prognose der Aktienkurse eingesetzt. In der vorliegenden Arbeit wurden wöchentliche Zeitreihen von Bunkerpreisen in vier großen Welthäfen (Rotterdam, Houston, Singapur und Fujairah) sorgfältig untersucht und zur Überprüfung der Prognoseleistung der Fuzzy-Modelle herangezogen. Die folgenden Bunkerarten wurden untersucht: 380cSt (hoher und niedriger Schwefel), 180cSt (hoher Schwefel), marines Dieselöl (MDO) und marine Gasöl (MGO). Zur Überprüfung der Prognosegenauigkeit werden vier Bewertungsmaßstäbe als Bewertungskriterium herangezogen, um die Prognoseleistung der Listingmodelle zu vergleichen. Vor dem Anwenden des Fuzzy-Prognoseverfahrens und um Nichtstationarität zu beseitigen, werden sowohl differenzierende als auch gleitende Mittelwerte auf die Daten angewendet. Es hat sich herausgestellt, dass alle vier Fehlermaße ihr Minimum am selben Punkt M opt erreichen, was wiederum die genaueren Prognosen zu den tatsächlichen Werten liefert. Da die Bedeutung der Treibstoffpreise steigt, könnte eine effektive Prognose den Betreibern zusätzlich mit Compliance-Themen und der Finanzplanung sowie den Regulierungsbehörden helfen, die den Zeitpunkt und die Kosten der Regulierung besser einschätzen. Artikel Apr 2015 Christos N. Stefanakos Orestis Schinas


No comments:

Post a Comment